and bond angles for non-H atoms. Bonds from carbon to hydrogen were in the range 0.93 (3) to 1.07 (3); N1 to H is 0.86 (2) Å. The molecular structure comprises a planar benzimidazole system fused to a reduced pyrimidine ring with two methyl substituents. The three atoms C1, N2 and N3 deviate by less than 0.05 Å from the best plane defined by the six benzene ring C atoms. Atom C1 is bonded to three N atoms. The bond lengths indicate a double bond to N3 [1.308 (3) Å] and single bonds to N1 [1.347 (3) Å] and N2 [1.400 (3) Å]. This bonding is in agreement with an H atom being bonded to N1 and not N3. Only atom C2 of the reduced pyrimidine ring is appreciably displaced from the plane occupied by the remaining ring atoms. This is in marked contrast to the situation in the only other example of this ring system, 1,2,3,4-tetrahydro-1-methyl-2-oxo-pyrimido[1,2-a]benzimidazole-4-carboxylic acid methyl ester (Weber & Troxler, 1974).

References

- BIRD, C. W. (1965). Tetrahedron, 21, 2179-2182.
- GABE, E. J., LE PAGE, Y., CHARLAND, J.-P., LEE, F. L. & WHITE, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- JOHNSON, C. K. (1965). Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- WEBER, H. P. & TROXLER, F. (1974). Helv. Chim. Acta, 57, 2364–2368.

Acta Cryst. (1991). C47, 1945-1948

Structure du Chloro-3 Epoxy- 4β , 9β Himachalanol-9a

PAR A. CHIARONI, M. PAIS ET C. RICHE

Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif sur Yvette CEDEX, France

A. BENHARREF ET A. CHEKROUN

Laboratoire de Chimie des Substances Naturelles, Faculté des Sciences, Université Cadi Ayyad, BP S15 Marrakech, Maroc

ET J.-P. LAVERGNE

Laboratoire de Synthèse et d'Etudes Physicochimiques, URA CNRS 468, Université de Montpellier II, Sciences et Techniques du Languedoc, 34095 Montpellier CEDEX 2, France

(Reçu le 22 février 1991, accepté 11 mars 1991)

Abstract. 3-Chloro- 4β , 9β -epoxy-3, 5, 5, 9-tetramethyldecahydro-1*H*-benzocyclohepten-9a-ol, $C_{15}H_{25}ClO_2$, $M_r = 272.82$, monoclinic, $P2_1$, a = 17.811 (4), b = 10.734 (2), c = 18.061 (4) Å, $\beta = 119.01$ (2)°, V = 3019.7 Å^3 , Z = 8 (four molecules in the asymmetric unit), $D_x = 1.201 \text{ g cm}^{-3}$, $\lambda(\text{Cu } K\alpha) = 1.5418 \text{ Å}$, $\mu = 20.9 \text{ cm}^{-1}$, F(000) = 1232, T = 293 K, R = 0.050 for9104 observed reflections. The structure has been absolute configuration elucidated and the determined. Three molecules exhibit the same conformation while the fourth shows some differences in the seven-membered ring. In the crystal, the molecules are linked in chains, through strong hydrogen bonds.

Introduction. La réactivité du β -himachalène (1), composant de l'huile essentielle du cèdre *Cedrus Atlantica*, et les propriétés de certains de ses dérivés sont décrites par ailleurs (Benharref, Chekroun & Lavergne, 1991). Si dans la plupart des cas, l'utilisation de la RMN 360 MHz à deux dimensions

a permis de déterminer la structure de ces composés, une analyse cristallographique a été nécessaire, pour identifier les produits de diépoxydation de ce sesquiterpène.

Comme le montre le schéma, l'action de l'acide métachloroperbenzoïque (mCPBA) sur (1), en quantité stoechiométrique, conduit avec un rendement quantitatif au seul α -6,7-époxyhimachal-2-ène, (2) (Bhan, Dev, Bass, Tagle & Clardy, 1982). En présence d'un excès de mCPBA, le β -himachalène donne un mélange de deux époxydes, (3) (30%) et (4) (70%). Un résultat identique est obtenu à partir de (2). Pour attribuer la stéréochimie du groupement époxy en position 2,3 dans les composés (3) et (4), le composé majoritaire (4) a été traité par HCl_{gaz} pour donner le 3-chloro 2,7-oxydohimachal-6-ol, (5). La détermination de la structure cristalline de ce composé a permis d'attribuer la stéréochimie des époxydes (3) et (4), et donc, celle de tous les dérivés préparés à partir de ces diépoxydes. Cette étude confirme la configuration absolue des himachalènes C5A C6A C7A C8A C9A C10A C11A C12A C12A C13A C14A C15A

016A

O17A CLB C1B C2B C3B C4B C5B C6B C7B

C8B C9B C10B

C11*B* C12*B*

C13B

C14B C15B

O16B

017*B* Cl*C*

C1C C2C

C3C

C4C

C5C C6C C7C C8C C9C

C10C C11C

C12C

C13C C14C

C15C 016C

017C

CLD CLD

C2D

C3D C4D

C5D

C6D C7D

C8D C9D

C10D

C11D C12D

C13D

C14D C15D

016D

017D

précédemment établie par dichroïsme circulaire et corrélations chimiques (Joseph & Dev, 1968).

Partie expérimentale. Cristal de $0.20 \times 0.35 \times$ 0,50 mm. Diffractomètre Enraf-Nonius CAD-4, radiation du cuivre, monochromateur de graphite, 25 réflexions d'axes telles que $10 \le \theta \le 19^\circ$ utilisées pour la determination précise des paramètres de la maille. 10946 réflexions (*hkl* et $h\bar{k}l$) enregistrées, méthode de balayage θ -2 θ jusqu'à θ = 68° (-20 < h < 20, -13) < k < 13, l = 0.20). 10007 réflexions indépendantes $(R_{int} = 0.034)$ dont 9104 observées telles que I > $3\sigma(I), \sigma(I)$ dérivé des méthodes statistiques de comptage. Mesure de trois réflexions de référence toutes les deux heures, correction des intensités pour une légère décomposition du cristal (10%). Absorption négligée. Méthodes directes (SHELXS86; Sheldrick, 1986). Coordonnées atomiques et facteurs d'agitation thermique anisotrope affinés par blocs, méthode des moindres-carrés, matrice complète. Fonction $\sum w(F_o - |F_c|)^2$ minimisée (SHELX76; Sheldrick, 1976). Atomes d'H introduits en position théorique à 1,00 Å de l'atome porteur (à l'exception de celui lié au groupe hydroxyle de chaque molécule, laissé en position expérimentale) et affectés d'un facteur de température isotrope équivalent à celui de l'atome porteur (+10%). Quatre molécules (A, B, C, C)D) dans l'unité asymétrique. Tandis que dans les molécules A et B, les facteurs de température équivalents pour l'ensemble des atomes sont relativement bas, ceux-ci apparaissent très élevés pour certains atomes: C(8), C(9), C(10) des molécules C et D, appartenant aux cycles à sept chaînons. R(final) =0,050, wR = 0,060 avec $w = 1/[\sigma^2(F_o) + 0,00008F_o^2]$, $\Delta/\sigma_{\rm max} = 0,44$. Sur la série-différence finale, $\Delta\rho_{\rm max} = 0,75$ e Å⁻³ au voisinage d'un atome de chlore, $\Delta\rho_{\rm min}$

Tableau 1. Coordonnées atomiques fractionnaires (×10⁴) pour les atomes non-hydrogène et facteurs de température isotrope équivalents (Å²×10³)

$U_{\mathrm{tq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_{i\cdot} \mathbf{a}_{j\cdot}$

x	ν	7	U
2879 (1)	2499 (1)	804 (1)	70 (1)
1029 (2)	1866 (3)	~ \$90 (2)	AT (2)
1169 (2)	3007 (3)	-41 (2)	47 (2)
1903 (2)	2795 (3)	868 (2)	53 (3)
1694 (2)	1673 (3)	1249 (2)	61 (3)
1197 (2)	632 (3)	615 (2)	63 (3)
526 (2)	1072(3)	-266(2)	49 (3)
-119(2)	2022 (3)	-249(2)	55 (3)
- 904 (2)	2296 (3)	-1098(2)	63 (3)
- 761 (2)	2908 (3)	- 1780 (2)	63 (3)
- 299 (2)	2070 (4)	-2113 (2)	68 (3)
674 (2)	2024 (3)	-1571 (2)	59 (3)
2088 (2)	3940 (3)	1423 (2)	67 (4)
- 425 (2)	1711 (3)	390 (2)	78 (4)
986 (2)	902 (4)	- 1872 (2)	80 (4)
1069 (2)	3205 (3)	- 1721 (2)	75 (4)
114 (1)	42 (2)	- 790 (1)	65 (2)
399 (1) 8277 (1)	3103 (2)	30 (1)	50 (2)
10034 (2)	2383 (2)	2020 (1)	97 (1) 49 (2)
9560 (2)	1229 (3)	3608 (2)	49 (2)
8586 (2)	1440 (3)	3127 (2)	62 (3)
8362 (2)	2577 (4)	3486 (2)	71 (4)
9036 (2)	3626 (3)	3800 (2)	65 (3)
9971 (2)	3174 (3)	4216 (2)	50 (3)
10195 (2)	2235 (3)	4945 (2)	52 (3)
11148 (2)	1972 (3)	5491 (2)	59 (3)
11610 (2)	1330 (4)	5073 (2)	71 (4)
11700 (2)	2135 (4)	4432 (2)	76 (4)
10915 (2)	2206 (3)	3558 (2)	65 (3)
8098 (2)	277 (4)	3157 (2)	80 (4)
9834 (2)	2574 (3)	5523 (2)	72 (4)
11029 (3)	3336 (4)	3101 (3)	95 (5)
108/6 (2)	1034 (4)	3053 (2)	87 (5)
10527 (1) 9787 (1)	4225 (2)	44// (1)	66 (2)
3/37 (1)	7212 (1)	4484 (1)	49 (2)
5080 (2)	6409 (3)	1593 (1)	56 (3)
4606 (2)	7592 (3)	1062 (2)	54 (3)
3624 (2)	7450 (4)	698 (2)	69 (3)
3315 (2)	6315 (4)	114 (2)	86 (5)
3960 (2)	5242 (4)	347 (2)	81 (4)
4890 (2)	5646 (3)	709 (2)	67 (4)
5036 (3)	6598 (4)	154 (3)	96 (5)
5986 (4)	6798 (5)	410 (4)	171 (12
6548 (3)	7411 (6)	1322 (5)	148 (10)
6717 (3)	6572 (6)	2052 (4)	147 (10
6008 (2)	6517 (4)	2247 (2)	81 (4)
314/ (3)	8622 (4)	254 (3)	99 (6)
4329 (4)	6338 (5)	- /84 (3)	149 (10
6060 (3)	7599 (5)	2/92 (3)	128 (8)
5438 (2)	4594 (2)	2823 (3)	96 (J) 86 (J)
4718 (1)	7760 (2)	329 (1)	72 (2)
5451 (1)	1495 (1)	2694 (1)	140 (2)
6155 (2)	2194 (3)	4591 (2)	59 (3)
5576 (2)	1062 (3)	4217 (2)	58 (3)
4891 (2)	1273 (3)	3301 (2)	74 (4)
4361 (2)	2428 (4)	3233 (2)	79 (4)
4854 (2)	3457 (3)	3882 (2)	69 (4)
5529 (2)	2991 (3)	4746 (2)	54 (3)
5176 (2)	2053 (3)	5154 (2)	54 (3)
5/52 (2)	1824 (3)	6096 (2)	69 (4)
7174 (3)	13/0 (8)	6386 (3)	146 (9)
7004 (3)	1098 (10)	5312 (3)	194 (13)
4314 (3)	137 (4)	2013 (2)	19 (4) 01 (5)
4283 (2)	2352 (4)	5023 (2)	51 (J) 85 (A)
7478 (3)	932 (4)	5038 (4)	119 (7)
7604 (3)	3154 (5)	5399 (4)	138 (9)
5942 (1)	4024 (2)	5289 (1)	65 (2)
5122 (1)	004 (2)	4692 (1)	54 (2)

= -0,56 e Å⁻³. Configuration absolue des molécules déterminée à partir de la diffusion anomale de l'atome de chlore avec la radiation du cuivre, en affinant d'une part, la structure dans la configuration

C1-C2-C3-C4-C5-C11-C1-

C7-016

Fableau	2.	Con	nparai	son	des	di	stances	int	erato	miqu	es
		(Å)	et des	ang	les	de	valence	(°))	-	

	A	В	С	D
CIC3	1 825 (3)	1.816 (3)	1.825 (3)	1,820 (5)
$C_1 = C_2$	1,518 (4)	1,517 (4)	1,518 (4)	1,523 (4)
C1-C6	1.543 (4)	1.536 (4)	1.539 (4)	1,535 (5)
CI-CII	1.574 (4)	1.565 (5)	1.548 (5)	1,560 (5)
C2-C3	1.540 (4)	1.535 (5)	1,549 (5)	1,523 (4)
C2-017	1.448 (4)	1,437 (3)	1,443 (4)	1,448 (4)
C3-C4	1.521 (4)	1,523 (5)	1,528 (6)	1,527 (5)
C3-C12	1,517 (4)	1,538 (5)	1,512 (6)	1,528 (6)
C4—C5	1,536 (4)	1,540 (5)	1,534 (6)	1,538 (5)
C5C6	1,529 (4)	1,536 (5)	1,519 (6)	1,521 (4)
C6—C7	1,548 (4)	1,548 (4)	1,539 (6)	1,551 (4)
C6—O16	1,407 (3)	1,422 (4)	1,420 (5)	1,426 (4)
C7—C8	1,520 (4)	1,519 (4)	1,537 (9)	1,522 (4)
C7—C13	1,532 (5)	1,513 (5)	1,510 (6)	1,524 (5)
C7—017	1,468 (3)	1,460 (3)	1,466 (5)	1,466 (3)
C8—C9	1,522 (5)	1,525 (5)	1,597 (9)	1,481 (7)
C9-C10	1,525 (5)	1,514 (5)	1,502 (9)	1,267 (8)
C10-C11	1,524 (5)	1,521 (5)	1,468 (8)	1,486 (7)
C11—C14	1,533 (5)	1,535 (5)	1,556 (7)	1,525 (6)
C11—C15	1,536 (5)	1,536 (5)	1,527 (6)	1,510 (6)
C2-C1-C6	98.1 (2)	97.3 (2)	98.1 (2)	97.5 (2)
\tilde{C}	119.8 (2)	119.0 (2)	118.7 (3)	118.6 (3)
C6-C1-C11	119.8 (2)	120.7 (2)	120.6 (3)	120.4 (3)
$C_1 - C_2 - C_3$	111.3 (2)	110.4 (2)	111.5 (3)	112.2 (3)
CI-C2-017	106.8 (2)	107.3 (2)	107.3 (2)	106.5 (2)
$C_{1}-C_{2}-017$	105.8 (2)	106.0 (2)	104.6 (2)	106.1 (3)
$C_{1} - C_{2} - C_{2}$	107.5 (2)	107.5 (2)	107.1 (2)	106.8 (2)
CIC3C4	109.9 (2)	110.7(2)	109.9 (3)	110.1 (3)
$C_{1} - C_{3} - C_{12}$	105.9 (2)	106.2 (2)	106.7 (3)	105.8 (3)
C2-C3-C4	109.4 (2)	109.6 (3)	109.0 (3)	110,3 (3)
C2-C3-C12	112.7(2)	111.3 (3)	111.8 (3)	112,7 (3)
C4-C3-C12	111.4 (3)	111.4 (3)	112,1 (3)	111,0 (3)
C3-C4-C5	114.7 (3)	115.1 (3)	116,0 (3)	114,8 (3)
C4-C5-C6	115.4 (3)	114,6 (3)	114,8 (3)	114,9 (3)
C1-C6-C5	105,1 (2)	105,4 (2)	104,7 (3)	106,2 (3)
C1-C6-C7	102,5 (2)	103,1 (2)	102,9 (3)	102,9 (2)
C1-C6-016	112,9 (2)	113,2 (2)	111,9 (3)	112,4 (2)
C5-C6-C7	113,3 (2)	113,2 (2)	113,7 (3)	113,6 (3)
C5-C6-016	110,3 (2)	109,1 (2)	110,7 (3)	109,7 (3)
C7-C6-016	112,3 (2)	112,6 (2)	112,4 (3)	111,7 (2)
C6-C7-C8	115,8 (3)	114,8 (2)	113,9 (4)	115,3 (3)
C6-C7-C13	114,2 (3)	114,1 (3)	114,2 (4)	115,0 (3)
C6-C7-O17	101,9 (2)	102,1 (2)	102,7 (3)	101,8 (2)
C8-C7-C13	108,2 (3)	108,1 (3)	109,6 (4)	107,2 (3)
C8-C7-O17	107,6 (2)	107,8 (2)	107,5 (4)	108,9 (2)
C13—C7—O17	108,4 (2)	109,5 (2)	108,4 (4)	108,3 (2)
C7—C8—C9	117,8 (3)	117,6 (3)	114,6 (5)	118,3 (3)
C8-C9-C10	113,5 (3)	113,8 (3)	114,7 (5)	129,5 (6)
C9-C10-C11	115,3 (3)	115,9 (3)	113,9 (5)	133,1 (7)
CI-CII-CI0	115,9 (3)	115,8 (3)	118,4 (4)	114,6 (4)
CI-CII-CI4	107,4 (3)	106,6 (3)	106,3 (3)	107,5 (3)
CI-CII-CI5	108,6 (3)	109,4 (3)	110,0 (3)	108,4 (3)
CI0-CI1-CI4	107,0 (3)	107,6 (3)	105,5 (4)	110,0 (4)
CI0-CI1-CI5	109,6 (3)	109,2 (3)	110,3 (4)	108,2 (4)
CI4-CII-CI5	108,0 (3)	107,9 (3)	105,4 (4)	107,9 (4)
C2-017-C7	109.7 (2)	109.9 (2)	109.3 (3)	109,8 (2)

inverse: les valeurs des facteurs R et wR s'établissent respectivement à 0,065 et 0,084, et en comparant d'autre part, les intensités mesurées et calculées des paires de Bijvoet hkl et $h\overline{k}l$. Facteurs de diffusion atomique extraits des International Tables for X-ray Crystallography (1974, Tome IV, pp. 99-149). Coordonnées reportées atomiques dans le Tableau 1.*

Tableau 3. Comparaison des angles de torsion (°)

	Α	В	С	D
C6-C1-C2-C3	78,2 (3)	79,2 (3)	77,9 (3)	77,1 (3)
C1-C2-C3-C4	- 58,2 (3)	- 58,6 (3)	- 55,2 (3)	- 56,2 (3)
C2-C3-C4-C5	34,0 (3)	34,0 (3)	31,2 (3)	31,4 (3)
C3C4C5C6	- 37,0 (3)	- 36,0 (3)	- 36,0 (3)	- 34,8 (3)
C4C5-C6-C1	58,0 (3)	58,2 (3)	58,9 (3)	58,1 (3)
C5-C6-C1-C2	- 73,9 (3)	- 75,1 (3)	- 75,7 (3)	- 74,3 (3)
C11-C1-C6-C7	- 86,4 (3)	- 86,2 (3)	- 87,0 (4)	- 84,2 (3)
C1-C6-C7-C8	79,2 (3)	78,9 (3)	79,8 (4)	81,0 (3)
C6-C7-C8-C9	- 63,7 (3)	- 64,9 (3)	- 65,3 (5)	- 57,4 (4)
C7-C8-C9-C10	67,6 (3)	69,1 (3)	70,9 (6)	41,5 (5)
C8-C9-C10-C11	- 81,7 (3)	- 80,9 (3)	- 81,6 (6)	- 41,4 (7)
C9C10C11C1	45,5 (3)	44,0 (3)	43,3 (5)	14,5 (5)
C10-C11-C1-C6	34,4 (3)	35,0 (3)	35,4 (4)	44,2 (4)
O16-C6-C7-C13	84,5 (3)	82,2 (3)	86,4 (4)	85,7 (3)
O16-C6-C7-O17	- 158,8 (3)	- 159,8 (3)	- 156,6 (4)	- 157,4 (3)

Fig. 1. Vue en perspective de la conformation majoritaire.

Discussion. Les distances interatomiques et les angles de valence des guatre molécules sont comparés dans le Tableau 2, les angles de torsion dans le Tableau 3. L'observation des angles de torsion montre immédiatement que les trois molécules A, B et C présentent la même conformation, les angles équivalents étant identiques, alors que des différences importantes interviennent dans la molécule D, au niveau de liaisons du cycle à sept, indiquant une conformation modifiée. La conformation majoritaire apparaît sur la Fig. 1 représentant la molécule A, avec la numérotation des atomes et la configuration absolue telle qu'elle a été déterminée: le pont oxygène entre l'atome C(2) et l'atome C(7) s'établit au-dessus du plan moyen des cycles des onze atomes [C(1)] à C(11)], tandis que le groupement hydroxyle et l'atome de chlore sont fixés en position α . La succession des valeurs des angles de torsion, sur le cycle à sept chaînons correspond, selon Hendrickson (1961) pour les molécules A, B et C, à une conformation twist-chair, dans laquelle les atomes C(6) et C(9)sont, en moyenne, déviés respectivement de -0.920(3) et 0.725(3) Å, du plan moyen formé par les cinq autres atomes du cycle. Dans la molécule D, ces déviations ne sont que -0,876 (7) et 0,360 Å. On observe également dans cette molécule, sur ce cycle, un très net raccourcissement des liaisons C(8)—C(9)1,481 (7), C(9)—C(10) 1,267 (8), C(10)—C(11)

^{*} Les listes des coordonnées des atomes d'hydrogène, des coefficients d'anisotropie thermique des atomes non-H, des différences les plus caractéristiques des paires de Bijvoet et des facteurs de structure ont été déposées au dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 54077: 19 pp.). On peut en obtenir des copies en s'adressant à: The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

1,486 (6) Å et une ouverture des angles de valence correspondants: C(8)-C(9)-C(10) 129,5 (6), C(9)-C(10) – C(11) 133,1 (7)°. Ces différences déjà amorcées dans la molécule C, concernent des liaisons et des angles incluant les atomes affectés d'une très grande agitation thermique anisotrope, et sont donc la conséquence de ces vibrations: tandis que la molécule C conserve la conformation des autres molécules, la molécule D se déforme dans la région la plus flexible du cycle à sept chaînons.

Dans le cristal, les molécules A de symétrie (x, y, z)s'enchaînent aux molécules A de symétrie $(-x, \pm 0,5)$ +y, -z) au moyen de liaisons hydrogène, établies entre le groupement hydroxyle OH(16) d'une molécule et l'atome d'oxygène O(17) de la molécule suivante. Il existe de même, des chaînes de molécules

B, de molécules C et D; les distances O16…O17, caractéristiques de ces liaisons hydrogène, étant pour les molécules A, B, C et D respectivement de 2,828 (3), 2,980 (3), 2,890 (3) et 2,780 Å.

Références

- BENHARREF, A., CHEKROUN, A. & LAVERGNE, J.-P. (1991). Bull. Soc. Chim. Soumis.
- BHAN, P., DEV, S., BASS, L. S., TAGLE, B. & CLARDY, J. (1982). J. Chem. Res. (S), pp. 344-345.
- HENDRICKSON. J. B. (1961). J. Am. Chem. Soc. 83, 4537-4547.
- JOSEPH, T. C. & DEV, S. (1968). Tetrahedron, 24, 3841-3852.
- SHELDRICK, G. M. (1976). SHELX76. Programme pour la détermination des structures cristallines. Univ. de Cambridge, Angleterre.
- SHELDRICK, G. M. (1986). SHELXS86. Programme pour la résolution des structures cristallines. Univ. de Göttingen, Allemagne.

Acta Cryst. (1991). C47, 1948-1952

Structure of the New Erythromycin Derivative V-T 108, (9S)-9,11-Dideoxy-9,11-[imino(2-acetamidoethylidene)oxy]erythromycin

By Peter Luger

Institut für Kristallographie, Freie Universität Berlin, Takustr. 6, 1000 Berlin 33, Germany

AND AXEL PROX AND EBERHARD WOITUN

Chemical Research Department, Dr Karl Thomae GmbH, Birkendorfer Str. 65, D-7950 Biberach/Riss, Germany

(Received 15 September 1990; accepted 26 February 1991)

Abstract. $C_{41}H_{75}N_{3}O_{13}$. 1.5 $CH_{3}OH.0.5H_{2}O, M_{r} =$ 875.14, orthorhombic, $P2_12_12$, a = 42.600 (6), b = 14.410 (1), c = 9.268 (2), V = 5689 (2) Å³, Z = 4, $D_x = 1.015 \text{ g cm}^{-3}, \quad \lambda(\text{Cu } K\alpha) = 1.5418 \text{ Å},$ $\mu =$ 6.37 cm^{-1} , F(000) = 1912, T = 293 K, R = 7.3% for 4716 observed reflections. The asymmetric C atoms C(9) and C(90) have S configurations. The sixmembered 9,11-oxazine ring has an unusual twist conformation. Two intramolecular hydrogen bonds N(9) - H(9N) - O(60)and N(92)—H(92)···O(10) exist, which have never been observed in any previously investigated erythromycin derivative. A further quasi-intramolecular hydrogen bond is formed via one of the solvent methanol molecules.

Introduction. Erythromycin is the most widely used macrolide antibiotic mainly acting against Grampositive bacteria. However, it is weakly active against Gram-negative organisms and its pharmacokinetics are not satisfactory. With the aim of improving both properties, tetrahydro-1,3-oxazine derivatives (2) were synthesized by condensation of (9S)-

erythromycylamine (1) with substituted acetaldehydes.

V-T 108 (4): $R = CH_3CONH$ -

© 1991 International Union of Crystallography